
 

Team Playfetch 

GYPSY’S TALE - TECHNICAL DESIGN 
DOCUMENT 

 

21 JULY 2018  

 

 

 

Document version 1.0 
Author: Thomas Wiltshire 

 

 

Gypsy’s Tale TDD 1/23 



 

TABLE OF CONTENTS 
 

TABLE OF CONTENTS 2 

PROJECT OVERVIEW 3 

GAME CONCEPT 3 

INTRODUCTION 3 

GAME ENGINE 3 

FEATURES 4 

TECHNICAL RISKS 5 

ART REQUIREMENTS 6 

THIRD PARTY TOOLS 7 

SYSTEM REQUIREMENTS 8 

GAME SYSTEMS 9 

OBJECTS, SCRIPTS AND SYSTEMS 9 

CLASSES 15 

USER INTERFACE 16 

MENUS AND GAME UI 16 

INPUT METHOD 17 

CODE OVERVIEW 19 

CODING CONVENTIONS 19 

COMMENTING 20 

UNITY ATTRIBUTES 21 

CODING GUIDELINES 22 

SOURCE CONTROL 22 

PROJECT TEAM 23 

MEMBERS 23 

TEAM SIGN-OFF 23 

 

 

Gypsy’s Tale TDD 2/23 



 

PROJECT OVERVIEW 

GAME CONCEPT 
Third person adventure narrative game based around the journey of a lost dog 

trying to find their way home. The story will be told over (3) days in a giant 

park environment, where the player will be able to complete little tasks on a 

“to do” list until their owner finds them. 

 

INTRODUCTION 
The gameplay of Gypsy’s Tale will consist of controlling a quadruped dog 

player with a 3rd person camera around a park to complete various simple 

objectives. The dog can move around the park and jump, as well as interact 

with different objects around the map, bark, sprint, and bring up the 

objectives list. 

 

GAME ENGINE 
The game engine of choice for this game is Unity, sometimes known as Unity3D. 

Unity is a cross-platform engine developed by unity technologies, it can be 

used to create simulations, two-dimensional and three-dimensional games, 

virtual reality experiences and so much more. 

As this project is a student project under AIE we have decided Unity as our 

game engine, as there will be plenty of support from teachers, students and 

online forums, etc. Everyone in the team is already fairly familiar with unity 

making that another great reason to use it, but most importantly it works 

perfectly for our game idea because of its handling and support of physics and 

collisions. Gypsy’s tale is a very visual experience and unity is great for 

this kind of project. 

 

 

Gypsy’s Tale TDD 3/23 



 

FEATURES 
● Quadruped dog player controller:​ The player can move forward, left, 

right, backwards and jump, turning of the player will be simply tilting 

the character. The animation state machine of the player will contain 

walk, sprint, jump, shuffle (A little shuffle on the spot, used for 

turning the player when not moving), and howling animation.   

● 3rd person camera: ​The camera we will be using for our game will be the 

Cinemachine camera used by unity for the Adam animated shorts. This 

camera allows us to do cutscenes easily, have different zoom level, 

nicely flow above or with the player all out of the box with easy setup 

and use. Using a third party camera means that we can focus efforts on 

other things like player controllers, animations and the game world. 

● Game world:​ The world in which the player will inhabit within the game 

is a simple park. The park will be inspired by inner-city parks like 

central park in new york for example. 

● Object interaction: ​Throughout the park, there will be multiple 

interactive objects or objective for the player to interact with. Some 

of these being the simple pressing of a button and others triggered by 

location or cutscene. 

● Objectives: ​The game will feature many different simple objectives 

scattered throughout the park, expanded on further below. 

● Howling: ​Simple playing of audio from a button press, it will also act 

as a type of interact button. 

● Day System: ​The game will run over 3 in-game days, these days will go 

for about 8-10 mins each and will determine which objectives can be 

complete. Each day will have different objectives, if they aren’t 

complete before the end of the day they can't be completed again until 

the game restarts. The player is required to return to their bed at the 

end of each day to start the next day. 

Objectives: 

● Hot Dog: ​The hog dog objective will require the player to find a hot dog 

wrapper on the ground in the level and interact with it. This will lead 

the player to a hot dog stand where they can steal a hot dog by 

interacting again. 

 

Gypsy’s Tale TDD 4/23 



 

● Learn to Howl: ​The player will be able to find another dog in the level 

that can be interacted with resulting in teaching the player about the 

howl mechanic. This will trigger a type of music rhythm mini-game 

requiring the player to press a button at the correct time. 

● Frisbee: ​2 NPCs will be playing frisbee together somewhere in the park. 

The player will have the ability to interrupt this game and steal the 

frisbee, the NPCs will then chase the player for a few seconds. 

● Hot Dog Vendor: ​There is a hotdog vendor somewhere in the park which the 

player can steal hot dogs from again. This time, however, the player 

will be required to knock over 3 bins to distract the NPC that runs the 

hotdog stand. 

● Busker: ​Similar to the ‘learning to howl’ objective the player will be 

required to complete another rhythm mini-game, however, a little more 

difficult than last time. 

● Butterflies: ​There will be a small butterfly found somewhere in the 

park, if interacted with the player will eat it. Eating the butterfly 

activates a quest where the player has to eat each butterfly that 

appears before the timer ends. 

● Hotdog Sprinkler: ​Another hog dog stealing objective, this time the 

distraction is turning on a sprinkler system. 

● Fetch Quest:​ There will be an NPC mother walking around on a set path 

looking for her child. If you find the child it will follow you back to 

the mother to complete the objective. 

● Photobomb:​ This objective is to attempt a photobomb by jumping into the 

frame at the right moment of a photo being taken. There will be 

different lights and sounds from the camera to try and get the timing 

right. 

 

TECHNICAL RISKS 
● Player Controller:​ Being a quadruped there could be possible issues with 

getting the player nice and polished and working exactly how we are 

imagining it.​ ​This isn’t exactly a risk when thinking of this alone, but 

when taking into account all of the other things that need to be 

complete in this game then this a truly real risk. 

 

Gypsy’s Tale TDD 5/23 



 

● Getting the Camera to feel right: ​Even though cinemahine is being used 

for this project and a lot of the main camera mechanics are already 

complete there is still the issue of getting the camera to feel right 

with the player. Not the biggest issue but an issue nonetheless. 

● Day System: ​Days in this game are going to determine which objectives 

can be completed, if not completed can affect the ability to do other 

objectives on other days. This could become quite complicated depending 

on how many objectives, how objectives affect others, and what 

objectives there is to complete.  

● Possible risks with object interactive objectives: ​The amount of 

objectives and interactable objects as well as the complexity of these 

objects and objectives is a very real risk for this project on whether 

everything will be completed on time or not. 

 
ART REQUIREMENTS 
The graphics formats that will be used throughout the development of the 

project are listed below with descriptions, file type and why we are using it 

for our project: 

● FBX: ​If you need scene information (Such as light sources for example) 

or animation, fbx is always the best format choice. It includes the 

animation, mesh, skeleton, morphs and vertex animation. fbx, however, 

has a much higher file size compared to the obj format, this is because 

fbx retains higher-fidelity data and works more efficiently in certain 

situations. This format is also handy when importing meshes into the 

Unity development engine, it can do so using its own fbx library without 

using any sort of API.   

● OBJ: ​Some of the main reasons for using this file format are for its 

ability to handle high resolutions without increasing the file size and 

it’s a simple and open file format, used by a wide variety of 3D 

software for export and import. This makes sharing 3D model as an Obj 

file great as most of the software out there will be able to interpret 

it correctly and consistently. Furthermore, an Obj file is going to be 

much more lightweight and small in file size compare to fbx of the same 

model. 

 

Gypsy’s Tale TDD 6/23 



 

● MB: ​The MB format is a binary scene file used with the Maya 3D software. 

It stands for Maya Binary scene, the file contains 3D models, textures, 

lighting and animation data that can all be used with the Maya 3D 

software.  

● TGA: ​Truevision Graphics Adapter Image file, or also known as Targa 

Graphic file, Truevision TGA or TARGA. The tga format is often 

associated with the video games industry and for texture files used with 

3D models. It supports 8,16, 24 or 32 bits per pixel at a maximum of 24 

bits for RGB colours and 8-bit alpha channel. 

● PNG: ​The png or the Portable Network Graphic is an image storage format. 

It uses lossless compression and contains a bitmap of indexed colours. 

It was originally created as a solution to limitations of the GIF 

format, mainly to increase the colour support and to provide a format 

without the patent license. The format also includes the ability to use 

an 8-bit transparency channel, allowing the fading from opaque to 

transparent. 

The average poly count of the scene at one time is around 2 million for tris 

and 6 million for the verts. The draw calls or batches, as named in unity, are 

about an average of 1500 for the scene at one time. 

 

THIRD PARTY TOOLS 
The third party tools that we will be using for the project are the following: 

● Unity 2017.3.0f3:​ The game engine. ​https://unity3d.com/ 
● Sourcetree 2.6.9.0:​ The main version control we are going to be using. 

https://www.sourcetreeapp.com/ 
● Visual Studio 2015/2017:​ The main IDE we will be using for writing 

gameobject scripts. ​https://visualstudio.microsoft.com/ 
● Google Chrome:​ For basic research and unity documentation. 

https://www.google.com/chrome/ 
● Google Drive:​ For the storage of all development documentation, builds 

and art asset. ​https://www.google.com.au/drive/ 
● Trello:​ Online management software for team collaboration and to-do 

lists. ​https://trello.com 
● Draw.io: ​Graphing software for creating development documentation. 

https://www.draw.io/ 
● Discord:​ Communication software for organizing work outside of work 

hours, sick days and other basic project communication. 
https://discordapp.com 

 

Gypsy’s Tale TDD 7/23 

https://unity3d.com/
https://www.sourcetreeapp.com/
https://visualstudio.microsoft.com/
https://www.google.com/chrome/
https://www.google.com.au/drive/
https://trello.com/
https://www.draw.io/
https://discordapp.com/


 

● GitHub:​ Repository service for the use with our source control software. 
https://github.com 

● Cinemachine 2.1.10:​ Camera software for cutscenes and the player 
controller. ​http://www.cinemachineimagery.com/ 

● ProCore: ​Used for block outs with the pre-development versions of the 
project. ​http://www.procore3d.com/ 

● OBJExporter:​ For the use with exporting unity scenes into wavefront obj 
file formats. 
https://assetstore.unity.com/packages/tools/utilities/scene-obj-exporter
-22250 

● xInput:​ API for managing connected controllers with unity. 
https://github.com/speps/XInputDotNet 

These tools will help with the creation of our project to the best possible 
standard. 

 

SYSTEM REQUIREMENTS 
The Minimum System Requirements for this project are the following: 

● Operating System: Windows XP SP2+, Mac OS X 10.9+, Ubuntu 12.04+. 
● Graphics Card: DX9 (Shader model 3.0) or DX11 with feature level 9.3 

capabilities. 
● CPU: SSE2 instruction set support. 

These are the requirements that are listed on Unity’s official website for 
running a unity game. 

Link to the official unity requirements page: 
https://unity3d.com/unity/system-requirements 

 

 

 

 

 

 

Gypsy’s Tale TDD 8/23 

https://github.com/
http://www.cinemachineimagery.com/
http://www.procore3d.com/
https://assetstore.unity.com/packages/tools/utilities/scene-obj-exporter-22250
https://assetstore.unity.com/packages/tools/utilities/scene-obj-exporter-22250
https://github.com/speps/XInputDotNet


 

GAME SYSTEMS 

OBJECTS, SCRIPTS AND SYSTEMS 
Player:  

Description: ​A quadruped dog, the main character of the game controlled by the 

user. Goes forward, backwards, left, right and jumps from controller input as 

well as other various things. 

Script:​ The main function of the script will be updating the player transform 

using xInput (Third party tool for using controllers), basic camera control 

and jumping. The player will move forward, backwards, left and right relative 

to the camera. For example, regardless of camera orientation, the player will 

always move left if holding the left button, if the user also rotates the 

camera left during this it will cause the player to rotate in a constant 

circle. Other functions that will take place in this script are the 

interactions with objects, this will be done by flicking a static bool value 

off and then on again so it can be accessed by the scripts of other objects 

that will require interaction.  

Exposed Variables:  

● Walking Speed. 

● Running Speed. 

● Jump Force. 

● Rotation Speed. 

● Main Camera. 

 

Day Manager: 

Description: ​This object will manage the day-night cycle of the game, as well 

as what objectives can be completed on each day. 

Script: ​This script will mainly be used for timers for the day cycle, 

switching the day, dimming lights, changing the skybox, and other day cycle 

 

Gypsy’s Tale TDD 9/23 



 

functions. Another important function, however, will be enabling different 

objectives depending on the day. 

Exposed Variables: 

● Day Length. 

● Amount of Days. 

 

Game Manager: 

Description: ​The Game manager will manage the pause state, objective 

progression, background music, UI pop-ups, and other background game logic. 

Script: ​This script will have an objective complete function that will be 

called by an objective script telling it which objective has been completed, 

this will mark it as compete for the todo list UI. This script will also 

handle the different UI pop-ups that will occur throughout the game, for 

example, the todo list. The todo list will pop up when an objective is 

complete as well as when the todo list button is pressed on the controller, 

this will be the same for the pause screen. Playing and changing any 

background music or sound effects will also be done in the game manager. 

 

UI: 

Description: ​This will be multiple different scripts depending on the UI used 

throughout the game, these scripts will control how the UI looks and 

functions. 

Script: ​UI scripts will be basic and consist of basic logic and mainly visual 

altering code. 

Exposed Variables:  

● Colors. 

● Text. 

● Size. 

 

Hot dog Wrapper: 

 

Gypsy’s Tale TDD 10/23 



 

Description: ​Simply an object that triggers the hot dog wrapper objective when 

interacted with. Creates a scent trail leading to the hot dog object. 

Script: ​This script will be responsible for starting the first hot dog 

objective by interacting with the hot dog wrapper. Once the interaction is 

complete the script will start spawning all of the scent particles to create a 

path to the hot dog stand for the player to steal. Once the player is 

successfully lead to the hot dog stand the particles will be despawned. 

Exposed Variables: 

● Path Starting Position. 

● Path Ending Position. 

● Path Color. 

● Path Spacing. 

 

Hot dog: 

Description: ​Simply an object that completes an objective when interacted 

with. The hot dog objectives will be marked as complete on the todo list upon 

interaction. 

Script: ​This script will check the interaction between the hot dog object and 

the player, if the interaction is successful then the current objective will 

be checked and then mark as complete.  

 

Music mini-game: 

Description: ​An empty gameobject attached to an object that requires the music 

mini-game. Object contains the logic of the mini-game. 

Script: ​This script will contain the logic of a music rhythm mini-game. This 

game will function by checking button presses in conjunction with timed 

animations on screen, if the timing is correct you’ll get a point and 

eventually complete the objective. 

 

Frisbee: 

 

Gypsy’s Tale TDD 11/23 



 

Description: ​Simply an object that completes an objective when interacted 

with. The frisbee objective will be marked as complete on the todo list upon 

interaction. 

Script: ​The frisbee object will simply be a lerp on a loop, like the hot dog, 

this script will check the interaction between the frisbee object and the 

player, if the interaction is successful then the current objective will be 

checked and then mark as complete. 

Exposed Variables: 

● Lerp Speed. 

● Lerp Arch. 

● Lerp Starting Point. 

● Lerp Ending Point. 

 

AI Seek: 

Description: ​An AI seek behaviour used for several NPC, the boys that chase 

you after stealing their frisbee and the hot dog owner on the third day. The 

hot dog owner will go slower if wet. 

Script: ​This will function as a player seeking AI script, will be reused for a 

few different NPC types and will have public values for speed and other seek 

customisation. 

Exposed Variables: 

● Seek Speed. 

● Seek Timeout. 

 

Bin \ Sprinkler: 

Description: ​Bin \ sprinkler object, when interacted with will knock over or 

turn on. 

Script: ​The main function of the script will be playing animations on player 

interaction. This script will be used for a few different interactable objects 

and so will require public values for specifying the object type. 

 

Gypsy’s Tale TDD 12/23 



 

Exposed Variables: 

● Enumerator for Object type. 

 

Bin \ Sprinkler Manager: 

Description: ​This manager will keep track of the knocked over bins or 

sprinklers and activate the next element of the objective once a certain 

amount is met. 

Script:​ Will manage how many bins or sprinklers have been interacted with by 

the player, once the interactions hit a specified number the objective will be 

marked as complete for that specific object type. 

Exposed Variables: 

● Interaction Amount. 

 

Hot dog stand Owner: 

Description: ​Simple AI object that will walk from the hot dog stand and pick 

up each of the knocked over bins from the player. 

Script: ​This will function similar to an AI seek behaviour, however, will seek 

towards specified locations. Once the hot dog stand Owner arrives at a 

location it will play an animation and then continue the seek to the next 

location after that animation is complete. 

Exposed Variables: 

● Locations Amount. 

● Array of Locations (Location 1, 2, etc). 

● Seek Speed. 

 

Butterfly: 

Description: ​Butterfly object will simply disappear when interacted with, or 

activate an objective if none have been interacted with yet. 

 

Gypsy’s Tale TDD 13/23 



 

Script: ​A simple script that checks interaction from the player and object, 

animates and turns off the object on success. If a butterfly is marked as an 

initial butterfly then it will start spawned and will act as the activation 

object for the Butterfly objective. 

Exposed Variables: 

● Initial Butterfly. 

 

Butterfly Manager:  

Description: ​The butterfly manager will keep track of how many butterflies 

have been interacted with, how much time is remaining and mark an objective as 

complete. 

Script: ​The main function of this script will be managing how many butterflies 

have been interacted with, counting the timer and marking the objective as 

complete when the interacted value equals the Butterfly amount value. If the 

timer finishes and not all butterflies have been interacted with than any 

remaining butterfly will be unspawned and objective cannot be complete. 

Exposed Variables: 

● Timer amount. 

● Butterfly amount. 

 

Photobomb: 

Description: ​An empty gameobject attached to some animated objects taking a 

photo. Will complete an objective when interacted with at the correct timing. 

Script: ​The script will be a simple check for interaction at the correct time 

of an animation. A timer will start and reset with the animation, if the 

interaction from the player happens within a set time of this timer then the 

objective will be marked as complete. 

Exposed Variables: 

● Interaction window. 

 

Gypsy’s Tale TDD 14/23 



 

CLASSES 
This is a class diagram of some of the main classes in the system: 

 

This is a class diagram of some of the objective / mini games in the system: 

 

Gypsy’s Tale TDD 15/23 



 

USER INTERFACE 

MENUS AND GAME UI 
There will be 3 main areas of UI throughout the project, the main menu, the 

to-do list and the pause menu. Other than these 3 main areas of UI the game 

plans on being relatively UI free. 

Menus: 

● Main Menu:​ Main menu will consist of 3 buttons for ‘Play’, ‘Credits’ and 

‘Exit’. 

● Pause Menu: ​Similar to the main menu but this menu will consist of 

‘Resume’, ‘Main Menu’ and ‘Exit’ instead. 

 

Game UI: 

● To-do List: ​A simple slide in and out text list of available player 

objectives. Once an objective is complete it will be automatically 

marked off of this UI list. 

 

Gypsy’s Tale TDD 16/23 



 

● Bone Collected: ​Once one of the bone collectables scattered throughout 

the game is collected a UI element showing how many have been collected 

(and how many left to collect) will appear in one of the bottom corners 

of the screen. 

Implementation of UI: 

● Menus: ​Main Menu and Pause menu will be implemented using the Unity 

canvas system. Menu buttons will be selected with the left analog stick, 

A button to confirm the selection, and B button to go back if available. 

● To-do List / Bone Collected: ​The to-do list and Bone collected UI will 

also be implemented using the Unity canvas system. The list is purely 

visual with simple text, no interactive elements other than bringing it 

to the screen, and ticking / removing completed objectives, the Bone 

Collected will be the same. 

 

INPUT METHOD 
The Input Method for the game will be through one connected controller for one 

player. A number of buttons will be used for different player abilities, 

including movement, jumping, interacting, camera movement, and other player 

related controls. 

We will be developing and testing with Xbox 360 and Xbox One controllers, 

other controllers, even keyboards, will work with our game, however, the 

intended controller to be used during development and after will be the Xbox 

controller. 

Gameplay: 

● Left Analog Stick:​ Move the player forward, back, left and right. 

● Right Analog Stick:​ Rotate and zoom the player camera. 

● Y Button:​ Dog Howl, simply plays a piece of audio. 

● A Button:​ Jump the player. Quick presses are smaller jumps and holds are 

bigger jumps. 

● B Button:​ The interact button, used to interact with objectives and 

activations. 

 

Gypsy’s Tale TDD 17/23 



 

● Left Bumper: ​Sprint button, press and hold to increase the player 

movement speed. 

● Back Button: ​Bring up the players to-do list of available objectives. 

● Start Button: ​Pause button, brings up a menu and pauses the game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gypsy’s Tale TDD 18/23 



 

CODE OVERVIEW 

CODING CONVENTIONS 
Naming Convention: 

In this project, we will be writing functions and classes in Camel case (eg. 
ThisFunction and ThisClass) and variables we will be using Hungarian Notation. 
If a variable is a member we will be specifying this using a “m_” followed by 
a single letter representing the value type (eg. m_fMyVar). A full chart of 
all the different notation is in the table below. 
 
Hungarian Notation Guide: 
 

Standard Notation  Meaning  Example 

m_  Member variable.  Player m_Player 

s_  Static variable.  static float ms_fTimer / 
static float s_fTimer 

n  Integer type.  int nValue 

u  Unsigned integer type.  unsigned int uValue 

b  Bool type.  bool bAlive 

f  Float type.  float fTimer 

c  Char type.  char cLetter 

v3  Vector 3.  Vector3 v3Position 

m4  Matrix 4.  Matrix4 m4Transform 

a  Array.  Player aPlayers[10] 

E and e  Enum type. E for 
declaration, e for 
variables of type. 

EWeapon / EWEP_RPG / eWeapon 

 

Unity Specific Notation  Meaning  Example 

g  Gameobject type.  Gameobject gEnemy 

rb  Rigidbody type.  Rigidbody rbBody 

as  Audio Source type   AudioSource asAudioSource 

ac  Audio Clip type.  AudioClip acDeathSound 

c  Color type.   Color cCarColor 

 

Gypsy’s Tale TDD 19/23 



 

mat  Material type.   Material matCat 

m  Mesh type.  Mesh mCatMesh 

s  Script type.  PlayerScript sPlayer 

 

COMMENTING 
General code: 

// Call the function pointer. 
int ​Callfunction(​AStarNode*​ pStart, ​AStarNode*​ pEnd); 

Throughout the project, we should be using single line comments above code 

lines as much as humanly possible to elaborate code flow. 

Functions: 

//-------------------------------------------------------------------------------------- 
// CalculatePath: Calculate the Astar path. 
// 
// Returns: 
// bool: Returns true or false if a path is found or not. 
// Param: 
// pStart: AStarNode pointer for the start of the path. 
// pEnd: AStarNode pointer for the end of the path. 
// finishedPath: A DynamicArray pointer of AstarNode pointers. 
//-------------------------------------------------------------------------------------- 
bool ​CalculatePath(​AStarNode*​ pStart, ​AStarNode*​ pEnd, ​DynamicArray<AStarNode*>*​ finishedPath); 

When commenting functions we should open the comment with some sort of comment 

line, then when closing do the same. Between the lines, we should have a title 

which has the name of the function and what it is doing. Under the title 

should be what parameters are taken in, if there is any as well as what is 

being returned if there is something being returned. 

Classes: 

//-------------------------------------------------------------------------------------- 
// AStarNode object. A Star pathfinding algorithm. 
//-------------------------------------------------------------------------------------- 
class ​AStar 

Classes should be commented similar to the way functions are within the 

comment lines, and in between the lines having the class name, what it 

inherits from and what it does. 

 

Gypsy’s Tale TDD 20/23 



 

Scripts: 

//-------------------------------------------------------------------------------------- 
// Purpose: Player Functionality. 
// 
// Description: The Player script is gonna be used for controlling each player when it is 
// their turn. This script is to be attached to an empty gameobject for each player. 
// 
// Author: Thomas Wiltshire 
// Edited By: Jeff Jeffer 
//-------------------------------------------------------------------------------------- 

All scripts are to be topped with a comment slab like the example above. This 

will be used to explain the purpose of the script, but also acting as a credit 

area for the author of the script and also anyone that has edited it. 

Marker Tags: 

● TO-DO​: We will use this comment tag at the start and end of code blocks 

that are incomplete or need to be completed. 

● RECODE​: We will use this comment tag at the start and end of code 

blocks, it will be used to mark if something needs to be recoded. 

 

UNITY ATTRIBUTES 
All public values throughout the project will use the unity provided 

attributes to organized the gameobject’s inspector. These will help designers 

with how to use public values, restrict how values are used, and change 

variable names so they are more understandable. 

● [Header(“Player:”)]:​ Used to separate public values into sections with 

headings to specify value use. 

● [LabelOverride(“Player Number”)]:​ Overrides public value names from code 

to something more relevant to designers. 

● [Range(1,2)]:​ Used for specifying a range between two numbers for public 

number values. Useful for making sure the correct numbers are chosen. 

● [Tooltip(“Which player is this?”)]:​ Tooltips for helpful tips on how to 

use the public value, descriptions or other helpful notes. 

● [Space]:​ Simply used to space out public values, handy for use with the 

[Header] tag for separating public values. 

 

Gypsy’s Tale TDD 21/23 



 

● [HideInInspector]:​ Mark a public value as hidden from the unity 

inspector. Used for when values need to be public but don't want to be 

altered by designers. 

 

CODING GUIDELINES 
● Keep up to date with commenting code. 

● Careful with variable naming, always make sure they are clear, clean and 

make sense. 

● Make sure to use the Marker tags if something is incomplete, needs to be 

recoded, etc. 

● All variables are to have private or public written in front of them, 

regardless of default access type. This is for better readability and 

consistency. 

● Getters and Setters, if required, are to be at the top of the script 

under variable declaration. 

 

 
SOURCE CONTROL 
The unity project will be kept on a central GitHub repository using Sourcetree 

to check in and check out each day.  

To help us keep organized and error-free here are some things to remember 
while using source control: 

● All code that is checked into the repository MUST compile and without 
error, as to make sure not to mess up other people's work or of course 
the project.  

● Always make sure that any unnecessary files (eg. visual studio project 
files) are not uploaded to the repository and are properly ignored using 
an appropriately set up gitignore file. 

● Make sure that commits have clear and well-formatted titles, describing 
what is being checked into the repository. If more information is needed 
in a commit, create a short brief title with a longer description to 
describe the changes. 

 

Gypsy’s Tale TDD 22/23 



 

PROJECT TEAM 

MEMBERS 
Here is a list of team members on the project. Programmers at the top with 

their name and what they are doing on the project next to it, the rest of the 

team will be under a title with their name. 

Programmers: 

- Thomas “Jeff” Wiltshire - Player controller, Story events, other basic 

programming tasks. 

Designers: 

- Mickey Seamark. 

- Emma Wearing. 

Producer: 

- Zane Talbot. 

Artist: 

- John Hickton-Burnett. 

- Ee Ching Lai. 

- Samuel Rau. 

 

TEAM SIGN-OFF 
Designers: 

 

Artists:  

 

Programmers: 

 

 

 

Gypsy’s Tale TDD 23/23 


